FREE DIFFERENTIABLE ACTIONS OF S¹ AND S³ ON HOMOTOPY 11-SPHERES

BY HSU-TUNG KU(1) AND MEI-CHIN KU

1. **Introduction.** By a homotopy n-sphere we mean a closed differentiable n-manifold having the homotopy of S^n . In [6] Montgomery and Yang have shown that there are exactly 10 homotopy 7-spheres not diffeomorphic to one another such that on each of them there is a free differentiable S^1 action. Moreover, on any homotopy 7-sphere, if there exists a free differentiable S^1 action, then there are infinitely many topologically distinct from one another. It is interesting to study an analogue for the free differentiable actions of S^1 and S^3 on the homotopy 11-spheres. The first example of free differentiable S^1 and S^3 action on an exotic homotopy 11-sphere is due to the Hsiangs [4]. In this paper, we succeed in finding out all possible homotopy 11-spheres which admit free differentiable S^3 actions. More precisely, we shall prove the following results.

THEOREM A. Let Σ_M^{11} denote the Milnor sphere which is the generator of θ_{11} [5]. Then the homotopy sphere $k\Sigma_M^{11}$, k odd, admits no free differentiable S^1 actions.

THEOREM B. A homotopy 11-sphere Σ^{11} admits a free differentiable S^3 action if and only if $\Sigma^{11} \approx 32k\Sigma_M^{11}$ for some $k \equiv 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 10, \pm 11, \pm 12, \pm 14, \pm 16 \pmod{31}$. These all admit infinitely many topologically distinct actions which can be distinguished by the first Pontrjagin class of the orbit spaces.

Throughout the paper, Z denotes the ring of integers; Q denotes the field of rational numbers. We let QP^2 be the quaternionic projective plane, and let CP^5 be the complex projective 5-space, all having the usual differentiable structure.

The main methods used to prove these results are based on the computation of the Eells-Kuiper μ -invariant [2] and the Montgomery-Yang ν -invariant [6].

- 2. **Proof of Theorem A.** First, we recall the definition of ν -invariant. Let Σ be a homotopy (4k-1)-sphere which is the boundary of a compact, oriented, differentiable 4k-manifold W. The invariant $\nu(\Sigma)$ of Montgomery-Yang [6] is defined as follows: We assume that
- (1) there is an element $\beta \in H^2(W; \mathbb{Z})$ whose reduction mod 2 is the second Stiefel-Whitney class $w_2(W)$ of W. Note that the homomorphism

$$j^*: H^q(W, \Sigma; Q) \rightarrow H^q(W; Q)$$

Received by the editors May 1, 1968.

⁽¹⁾ This work was supported by National Science Foundation grant GP 7952X.

induced by the inclusion map is an isomorphism onto for q = 4l, 0 < l < k and for q = 2k. Define $\nu(\Sigma)$ by

$$\nu(\Sigma) \equiv \left\langle e^{j^{*-1}\beta/2} \sum_{i=0}^{k-1} \hat{A}_{i}(p_{1}(W), \dots, p_{i}(W)) + N_{k}(p_{1}(W), \dots, p_{k-1}(W)), [W] \right\rangle + t_{k}\tau(W) \pmod{1},$$

where we use the notation in [2].

We now proceed with the proof of the Theorem A. In order to prove Theorem A it suffices to prove the following lemma because the Eells-Kuiper invariant $\mu(\Sigma_M^{11}) \equiv -1/992 \pmod{1}$ and $\theta_{11} = Z_{992}$ [5].

Lemma 2.1. Let S^1 act freely and differentiably on a homotopy 11-sphere Σ^{11} . Then

(2) $\mu(\Sigma^{11}) \equiv (18i + 204i^2 + 576i^3 + 296j + 1440ij + 496t)/992 \pmod{1}$, for some integers j, i and t.

Proof. Let α be the generator of $H^2(\Sigma^{11}/S^1; Z)$. Since Σ^{11} admits free S^1 action, we have the principal bundle $\xi \colon S^1 \to \Sigma^{11} \to \Sigma^{11}/S^1$ which is homotopically equivalent to the classical Hopf bundle $S^1 \to S^{11} \to CP^5$. Hence the total Pontrjagin class $p(\xi)$ of the bundle ξ is given by $p(\xi) = 1 + \alpha^2$. Let W be the total space of the associated disk bundle $D^2 \to W \xrightarrow{\pi} \Sigma^{11}/S^1$ of ξ . The space W is homotopically equivalent to Σ^{11}/S^1 with $w_2(W) \neq 0$, and index $\tau(W) = 1$. Let

$$p_1(\Sigma^{11}/S^1) = r_1\alpha^2,$$
 $p_2(\Sigma^{11}/S^1) = r_2\alpha^4,$ $p_1(W) = r_3\beta^2,$ $p_2(W) = r_4\beta^4,$

where $\beta = \pi^* \alpha$, and $r_1, r_2, r_3, r_4 \in \mathbb{Z}$. We can see that $r_3 = r_1 + 1$, and $r_4 = r_1 + r_2$ because

$$p^*(W) = \pi^*\{(1+r_1\alpha^2+r_2\alpha^4)(1+\alpha^2)\} = 1+r_3\beta^2+r_4\beta^4.$$

Since β reduction mod 2 is $w_2(W)$, the invariant $\nu(\Sigma^{11})$ is well defined. By substituting the above data into the formula for ν , we obtain

$$\nu(\Sigma^{11}) \equiv \frac{1}{2^{10} \cdot 3^2 \cdot 5} - \frac{r_3}{2^{10} \cdot 3^2} + \frac{-4r_4 + 7r_3^2}{2^{10} \cdot 3^2 \cdot 5} + \frac{1260r_3r_4 - 945r_3^3}{2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 31} - \frac{1}{2^7 \cdot 31} \pmod{1}.$$

But $\nu(\Sigma^{11}) = 2\mu(\Sigma^{11})$ [6]; hence

$$496\nu(\Sigma^{11}) \equiv 992\mu(\Sigma^{11})$$

$$\equiv \{-329 - 155r_3 - 124r_4 + 217r_3^2 + 60r_3r_4 - 45r_3^3\}/2^5 \cdot 3^2 \cdot 5 \pmod{496}$$

$$\equiv \{-312 + 80r_1 - 64r_2 + 142r_1^2 + 60r_1r_2 - 45r_3^3\}/2^5 \cdot 3^2 \cdot 5 \pmod{496}.$$

As μ is a complete invariant for homotopy 11-spheres, $992\mu(\Sigma^{11})$ is an integer modulo 496. Thus we must have $r_1 = 2s$ for some integer s, and

$$992\mu(\Sigma^{11}) \equiv \{-39 + 20s - 8r_2 + 71s^2 + 15r_2s - 45s^3\}/2^2 \cdot 3^2 \cdot 5 \pmod{496}.$$

Again we can see that both r_2 and s must be odd, say, $r_2 = 2h + 1$ and s = 2n + 1 for some integers h and n. Then

$$992\mu(\Sigma^{11}) \equiv \{7 + 42n + 7h - 128n^2 + 30hn - 180n^3\}/2 \cdot 3^2 \cdot 5 \pmod{496}.$$

The integer h must be odd, that is, h=2a+1 for some integer a. Hence we have

(3)
$$992\mu(\Sigma^{11}) \equiv \{7 + 36n + 7a - 64n^2 + 30an - 90n^3\}/45 \pmod{496}.$$

On the other hand 2α (resp. 4α) reduction mod 2 is equal to $0 = w_2(\Sigma^{11}/S^1)$, hence

$$A(\Sigma^{11}/S^1, \alpha) = \langle e^{\alpha} \hat{A}(\Sigma^{11}/S^1), [\Sigma^{11}/S^1] \rangle$$

(respectively, $A(\Sigma^{11}/S^1, 2\alpha)$) is an integer [3], where $[\Sigma^{11}/S^1]$ denotes the fundamental homology class of Σ^{11}/S^1 . By a simple calculation

$$A(\Sigma^{11}/S^{1}, \alpha) = \left\langle \frac{\alpha^{5}}{5!} - \frac{\alpha^{3}p_{1}(\Sigma^{11}/S^{1})}{6 \cdot 24} + \frac{\alpha}{2^{7} \cdot 45} \left\{ -4p_{2}(\Sigma^{11}/S^{1}) + 7p_{1}^{2}(\Sigma^{11}/S^{1}) \right\}, [\Sigma^{11}/S^{1}] \right\rangle$$

$$= \frac{1}{5!} - \frac{r_{1}}{6 \cdot 24} + \frac{-4r_{2} + 7r_{1}^{2}}{2^{7} \cdot 45}$$

$$= (7n^{2} - 3n - 1 - a)/360;$$

here we use the fact that $r_1 = 4n + 2$, and $r_2 = 4a + 3$. Similarly

$$A(\Sigma^{11}/S^1, 2\alpha) = (7n^2 - 33n + 29 - a)/180.$$

Hence we have

(4)
$$a \equiv 7n^2 - 3n - 1 \pmod{360}$$
,

(5)
$$a \equiv 7n^2 - 33n + 29 \pmod{180}$$
.

Solving (4) and (5) we obtain the solution $n \equiv 1 \mod 6$, thus we can write

$$n = 6i + 1,$$
 $a = 7n^2 - 3n - 1 + 360i$

for some integers i and j. Substituting these values into (3), we get

$$992\mu(\Sigma^{11}) \equiv 18i + 204i^2 + 576i^3 + 296i + 1440ij \pmod{496}$$

This completes the proof of Lemma 2.1.

Notice that $r_1 = 4n + 2 = 24i + 6$, hence as a by-product of the proof, we have the following corollary:

COROLLARY 2.2. If S^1 acts freely and differentiably on a homotopy 11-sphere Σ^{11} , then

$$p_1(\Sigma^{11}/S^1) = (24i+6)\alpha^2, \qquad p_2(\Sigma^{11}/S^1) = (1008i^2 + 264i + 15 + 1440j)\alpha^4,$$

for some integers i and j.

3. **Proof of Theorem B.** First we will demonstrate a number of lemmas which lead to the proof of Theorem B.

LEMMA 3.1. Let S^3 act freely and differentiably on a homotopy 11-sphere Σ^{11} . Then $\mu(\Sigma^{11}) \equiv n/124 \pmod{1}$ for some integer n.

Proof. The proof is almost the same as the proof of Lemma 2.1. We have the principal bundle $\eta\colon S^3\to \Sigma^{11}\to \Sigma^{11}/S^3$ with associated disk bundle $D^4\to W$ $\xrightarrow{\pi}\Sigma^{11}/S^3$. The bundle η is homotopically equivalent to the Hopf bundle $S^3\to S^{11}\to QP^2$, hence the total Pontrjagin class $p(\eta)=1+2\bar{\alpha}+\bar{\alpha}^2$, where $\bar{\alpha}$ is the generator of $H^4(\Sigma^{11}/S^3;Z)$. Since W and Σ^{11}/S^3 are of the same homotopy type, it is not difficult to see that W is a spin manifold with index $\tau(W)=0$. Let $p_1(\Sigma^{11}/S^3)=r\bar{\alpha}$, $r\in Z$, and $\bar{\beta}=\pi^*\bar{\alpha}\in H^4(W;Z)$. By Hirzebruch's index theorem [3] we have

$$p_2(\Sigma^{11}/S^3) = (45 + r^2)\bar{\alpha}^2/7.$$

The total Pontriagin class p(W) is given by

$$p(W) = \pi^* \{ (1 + r\bar{\alpha} + (45 + r^2)\bar{\alpha}^2 / 7)(1 + 2\bar{\alpha} + \bar{\alpha}^2) \}.$$

This implies

$$p_1(W) = (r+2)\overline{\beta}, \qquad p_2(W) = (r^2+14r+52)\overline{\beta}^2/7.$$

We calculate the Eells-Kuiper μ -invariant

$$\mu(\Sigma^{11}) \equiv \{4p_2(W)p_1(W) - 3p_1^3(W) - 24\tau\}[W]/2^{11} \cdot 3 \cdot 31 \pmod{1}$$

$$\equiv -(r+2)(r-2)(17r+62)/2^{11} \cdot 3 \cdot 7 \cdot 31 \pmod{1}.$$

The number $992\mu(\Sigma^{11})$ is an integer modulo 992, hence the integer r must be in the form r = 4m + 2 for some integer m so that

$$992\mu(\Sigma^{11}) \equiv -m(m+1)(17m+24)/21 \pmod{992},$$

and

(6)
$$m(m+1)(17m+24) \equiv 0 \pmod{21}$$
.

Note that $\hat{A}_2(\Sigma^{11}/S^3)$ is an integer because Σ^{11}/S^3 is a closed spin manifold [3]. As

$$\hat{A}_2(\Sigma^{11}/S^3) = \{-4p_2(\Sigma^{11}/S^3) + 7p_1^2(\Sigma^{11}/S^3)\}/2^7 \cdot 45$$
$$= (r^2 - 4)/2^7 \cdot 7 = m(m+1)/56,$$

hence

$$m(m+1) \equiv 0 \pmod{56}.$$

Thus there exists an integer c such that m(m+1) = 56c. Substituting this into (6) we obtain

$$8c(17m+24) \equiv 0 \pmod{3},$$

or c(17m+24)/3 is an integer. Therefore

$$\mu(\Sigma^{11}) \equiv -m(m+1)(17m+24)/992 \cdot 21 \pmod{1}$$

$$\equiv -8\{c(17m+24)/3\}/992 \pmod{1}$$

$$\equiv -\{c(17m+24)/3\}/124 \pmod{1}.$$

LEMMA 3.2. If S^3 acts freely and differentiably on Σ^{11} , then $p_1(\Sigma^{11}/S^3) = (96\bar{\iota} + 2)\bar{\alpha}$, for some $\bar{\iota} \in Z$, where $\bar{\alpha}$ is the generator of $H^4(\Sigma^{11}/S^3; Z)$.

Proof. Since S^1 is a subgroup of S^3 , the free action of S^3 on Σ^{11} induced a free action of S^1 on Σ^{11} . It follows from (2) and Lemma 3.1 that

$$18i + 204i^2 + 576i^3 + 296j + 1440ij \equiv 0 \pmod{8},$$

or

$$2i(9+102i) \equiv 0 \pmod{8}.$$

Hence $i \equiv 0 \pmod{4}$. This shows that $i = 4\overline{i}$ for some integer \overline{i} .

Next consider the fibre bundle $\zeta: S^2 \to \Sigma^{11}/S^1 \xrightarrow{\pi} \Sigma^{11}/S^3$ which is homotopically equivalent to the standard fibration $S^2 \to CP^5 \xrightarrow{\pi} QP^2$. By using the well-known fact that $p(\zeta) = 1 + 4\bar{\alpha}$ [1],

$$p(\Sigma^{11}/S^1) = \pi^* \{ [1 + r\bar{\alpha} + (45 + r^2)\bar{\alpha}^2/7][1 + 4\bar{\alpha}] \},$$

and so $r_1 = r + 4 = 24i + 6 = 96i + 6$ by Corollary 2.2. Thus

$$(8) r = 96i + 2.$$

Recall that r=4m+2, and m satisfies (6) and (7).

LEMMA 3.3. The solutions m of (6) and (7) satisfying (8) are the following:

(9)
$$m \equiv 0 \pmod{168}, hence r \equiv 2 \pmod{672},$$

or

(10)
$$m \equiv 48 \pmod{168}$$
, hence $r \equiv 194 \pmod{672}$.

The proof is an elementary number theory calculation.

Summing up, we have therefore proved

LEMMA 3.4. Let S^3 act freely and differentiably on a homotopy 11-sphere Σ^{11} . Then one of the following holds:

(11)
$$p_1(\Sigma^{11}/S^3) = (672k+2)\bar{\alpha}$$
 for some integer k, and

$$\mu(\Sigma^{11}) \equiv -(13k+1)(k+6)k/31 \pmod{1}$$
.

(12) $p_1(\Sigma^{11}/S^3) = (672k + 194)\bar{\alpha}$ for some integer k, and

$$\mu(\Sigma^{11}) \equiv -7(-k+1)(7k+2)(k-7)/31 \pmod{1}.$$

Now we can easily verify Theorem B. By direct computation, a free differentiable S^3 action on a homotopy 11-sphere Σ^{11} with $p_1(\Sigma^{11}/S^3)$ and $\mu(\Sigma^{11})$ satisfying (11)

(respectively (12)) implies $\Sigma^{11} \approx 32k\Sigma_M^{11}$ for some $k \equiv 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 10, \pm 11, \pm 12, \pm 14, \pm 16 \pmod{31}$. But W. C. Hsiang and W. Y. Hsiang [4] have constructed examples satisfying (11) for all integers $k \in \mathbb{Z}$. This clearly completes the proof of Theorem B.

It is of interest to find out what can be said about the existence of free differentiable S^3 actions on Σ^{11} satisfying (12).

REFERENCES

- 1. M. F. Atiyah, *Thom complexes*, Proc. London Math. Soc. 11 (1961), 291-310.
- 2. J. Eells and N. H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962), 93-110.
- 3. F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966.
- 4. W. C. Hsiang and W. Y. Hsiang, Some free differentiable actions of S¹ and S³ on 11-spheres, Quart. J. Math. Oxford Ser. (2) 15 (1964), 371-374.
- 5. M. Kervaire and J. Milnor, *Groups of homotopy spheres*. I, Ann. of Math. 77 (1963), 504-537.
- 6. D. Montgomery and C. T. Yang, Differentiable actions on homotopy seven spheres. II, Proc. of the conference on transformation groups, Springer-Verlag, New York, 1968.

Institute for Advanced Study, Princeton, New Jersey